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Abstract 

The influence of the bending of a crystal on the 
formation of diffracted images in Bragg section topo- 
graphs as well as in Laue section and traverse topo- 
graphs is studied. In the case of Bragg section 
topography the interferometric fringes due to the 
interference of waves once and twice internally reflec- 
ted inside a bent crystal are described. It is established 
that the maximum positions of diffracted intensity 
satisfy the law x, = [167r(2n - 1)/5B2] 1/3, where x, is 
the distance from the incidence slit of the X-rays, B 
is the uniform strain gradient and n is the fringe 
number. This dependence is found to be in good 
agreement with experimental data. The Laue section 
topograph of a bent crystal with a screw dislocation 
parallel to the diffraction vector is considered. The 
effects of asymmetry in the Pendell6sung fringe pat- 
tern and of 'splitting' of the direct image with respect 
to the dislocation line in both the experimental and 
simulated topographs are accounted for. The vari- 
ation of the contrast of dislocations with depth inside 
a bent crystal in Laue traverse topographs is studied 
by computer simulations using the reciprocity 
theorem. 

I. Introduction 

The dynamical scattering of X-rays (DSXR) in distor- 
ted crystals with a uniform strain gradient (USG) has 
been investigated in a number of studies (Kato, 1964; 
Bonse, 1964; Penning, 1966; Hart, 1966; Blech & 
Meieran, 1967; Malgrange, 1969; Ando & Kato, 1970; 
Petrashen', 1973; Chukhovskii, 1974; Petrashen' & 
Chukhovskii, 1975; Chukhovskii & Petrashen', 1977; 
Chukhovskii, Gabrielyan & Petrashen', 1978; 
Kushnir, Suvorov & Mukhin, 1980; Khrupa, 
Kislovskii & Datzenko, 1980; Petrashen' & 
Yaroslavskaya, 1981; Balibar, Chukhovskii & 
Malgrange, 1983; Shulpina, Petrashen', Chukhovskii 
& Gabrielyan, 1984) and is a starting point for the 
quantitative theory of X-ray topographic images and 
the theory of DSXR in distorted crystals in general. 
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In practice a situation can exist where the USG 
macroscopic elastic field is superposed on those 
caused by single defects in a crystal. Their cooperative 
action was experimentally observed: in X-ray traverse 
topographs of bent crystals the dislocation contrast 
is found to be reversed (Blech & Meieran, 1967); in 
Laue section topographs of a twisted silicon crystal 
the Pendell6sung fringe patterns become asym- 
metrical with respect to a dislocation line (Kushnir, 
Suvorov & Mukhin, 1980); owing to dislocation loops 
randomly distributed within a crystal the dependence 
of the reflecting power on the radius of curvature of 
the sample is changed (Khrupa, Kislovskii & 
Datenzko, 1980); and in Bragg diffraction a new kind 
of USG fringe, curved near local inhomogeneities, 
has been observed recently (Shulpina, Petrashen', 
Chukhovskii & Gabrielyan, 1984). 

The study of these phenomena is of interest in itself 
since it permits one to understand better the general 
features of the formation of X-ray topographic images 
and it can also demonstrate how to use crystal bending 
as a new tool for DSXR investigations of crystal- 
lattice defects. 

In the present paper we shall discuss the physical 
foundations of the formation of X-ray topographic 
images for bent crystals; these are important from the 
point of view of applications and further development 
of DSXR methods. We confine our consideration to 
the case of the USG I BI ~ 1 [the dimensionless USG 

l O2(hu)/OSoOSh; hereafter the notation is that of B = Z  
Petrashen' & Chukhovskii (1975)], when two wave 
fields relating to the two branches of the dispersion 
surface are essential and contribute simultaneously 
to the formation of images. In § 2 the Green function 
of the diffracted radiation and its asymptotic 
expression (the eikonal approximation) are used for 
the explanation of the Pendell6sung fringes in Laue 
section topographs. The eikonal approximation is 
used to treat the USG fringe formation in Bragg 
section topographs in § 3. 

In the final section some pecularities of the disloca- 
tion images in both Laue section and traverse topo- 
graphs are discussed. The treatment is based on 
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computer-simulated images calculated with a numeri- 
cal variable-step algorithm (Petrashen', 1976) and the 
reciprocity theorem (Petrashen', Chukhovskii & 
Shulpina, 1980). 

2. PendeU6sung fringes in Laue section topographs 

The general theory of DSXR in a crystal with an 
arbitrary USG is developed by Chukhovskii & 
Petrashen' (1977), using the Green-function method. 
In the case of IBI ~ 1 for the Green function of the 
diffracted radiation one has the following expression 
in the entire region of influence p = 2(SoSh) 1/2>- 0 (the 
so-called Borrmann fan): 

Gho( So, Sh) ~" Jo[ S (p ) ] (2.1) 

with the eikonal function 

S ( p ) = ( p / 2 ) ( 1  + B2p2) 1/2 

+ [ ( 1 + 2ik)/21BI] In[ (1 + B2p 2) 1/2 +IBIo ] 
- i e  In [(1 + B202) 1/2+ Inlp], (2.2) 

where e = sign B, Jo(S) is the Bessel function of zero 
order, and k is the normalized dynamical absorption 
coefficient, k < 0. 

The first and second terms on the right-hand side 
of (2.2) are completely equivalent to the Kato eikonal 
(Kato, 1964). The third term in (2.2) is included in 
the amplitude of the diffracted wave in the Kato 
theory. The eikonal function (2.2) was fruitfully util- 
ized for experimental studies of Pendell6sung fringes 
in elastically deformed silicon (Hart, 1966) and the 
penetration of two wave fields through silicon,crystals 
deformed by a uniform temperature gradient 
(Malgrange, 1969). 

As is seen from (2.2) the imaginary part of the 
eikonal function depends on the strain sign e = sign 
B through the parameter k / l B ] - e .  The transition 
from the dynamical coefficient k to k - B  can be 
interpreted as the renormalization of the dynamical 
absorption for any USG [for details, see Chukhovskii 
& Petrashen' (1977)]. 

In accordance with (2.1) and (2.2) the wave-front 
surfaces within the Borrmann fan are the hyperbolic 
cylinders p = constant, similar to the case of a perfect 
crystal. The Pendell6ssung fringe positions in the Laue 
section topograph are determined by the phase 
difference between the two wave fields ~IF = 2 Re S 
and now depend on the USG parameter B. A numeri- 
cal example of the phase difference ~IF versus the 
strain parameter ~ = B T  along the section topograph 
axis x = 0 (T  is the dimensionless crystal thickness) 
is shown in Fig. 1. 

From (2.1) and (2.2) it follows that the Pendelliisung 
fringe positions do not depend on the USG sign while 
their contrast does so, owing to the renormalization 
of the dynamical absorption coefficient k ~ k - B .  In 
Fig. 2 the integrated reflecting-power coefficients of 

the two wave fields as functions of the USG parameter 
B are drawn. It is easily seen that they are equal to 
each other at the point B = k. In this case the Pendel- 
16sung fringe contrast is maximum and the total 
integrated reflecting power falls to a minimum. 

It is worth noticing that the phase d i f fe rence / IF '=  
/IF(B ~ 0 ) - / I F ( B  = 0) < 1 for IBI < T -3/2 [see (2.2)] 
and for the diffracted wave field the influence of the 
crystal bending reduces only to the renormalization 
of the dynamical absorption coefficient. 

In the general case of an arbitrary distortion of the 
crystal lattice the exact solution for the Green func- 
tion of the problem in question is not known. 
Nevertheless, one can write down a simple formula 
for the phase of the diffracted wave along the section- 
topograph axis (x =0) ,  using the equation for the 
eikonal function 

( O S / O z - a ) 2 - ( O S / O x + o ~ ) 2 = l + 2 i k ,  (2.3) 

where the deviation parameter a(x,  z) at a point (x, z) 
inside a crystal is defined as 

~(x,z)=(~o/4l~hl) ' -JO(hu)/ash, 
ao= ( K2h _ K2) /  K 2. (2.4) 

Assuming that the eikonal function S(x,  z) mainly 
depends on the hyperbolic coordinate p = (z 2 -  x2) 1/2 
and neglecting the derivative aS/ax  in comparison 
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Fig. 1. The dependence of the phase difference AF on the strain 
= BT; T is the dimensionless crystal thickness, T = 30. 

-0"06 -0.03 0 0~03 0.06 

Fig. 2. The total integrated intensity I and its components relating 
to the Bloch waves versus the strain gradient B. Si crystal, Mo 
Ka, 311 reflection, T= 30, k = -0.01. 
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with oS/oz  one can find, from (2.3), 

S(O, z ) =  i dz'{a[O, z' +(1 + 2ik + o~2(0, z')]l/2}. 
0 

(2.5) 

It is interesting that in the case of a crystal with 
USG the approximate formula (2.5) seems to provide 
the same result for the phase difference AF(0, z) as 
does the exact solution of the problem. 

We shall use (2.5) further to analyse the features 
of the Pendell6sung fringe pattern in Laue section 
topographs of dislocations in a bent crystal. 

3. A new kind of interfermometric fringe 
in Bragg section topographs 

In the Bragg geometry of X-ray diffraction in a 
crystal with USG the section-topograph pattern is 
described with the Green function introduced by 
Chukhovskii, Gabrielyan & Petrashen' (1978). The 
expansion of this function as a wave packet takes the 
form 

Po~ i°° 
Gho-- dp Ph(P), (3.1) 

Po-im 

where 

~_1_~( -  ig )  
Ph(P) = l-!-v~/2 exp [(p/2)(So+ Sh)]. 

217" -~-7- 2 - ' 7 ~)o ) 
(3.2) 

Here the parameters Yo and Y are such that 

Yo = ivl/2P, (3.3) 

Y = Yo+4U'/2B(so + Sh), (3.4) 

and ~ is the parabolic cylinder function of order u 
equal to 

u=  i(1 + 2ik) /4B.  (3.5) 

An analysis of wave-field propagation in the bulk 
of a crystal can be carried out on the basis of (3.1)- 
(3.5), like the analysis performed by Balibar, 
Chukhovskii & Malgrange (1983) (see also 
Chukhovskii, Gabrielyan & Petrashen', 1978; 
Chukhovskii, 1981; Gronkowski & Malgrange, 1984) 
in the Laue diffraction case; it yields the following 
picture. 

According to the well known Ewald-Laue theory 
an incident spherical wave generates two wave fields 
below the entrance surface of a crystal. In a semi- 
infinite crystal only the Bloch waves belonging to the 
lower part of branch 1 ( a0>  0) and the upper part of 
branch 2 (ao < 0) of the dispersion surface are excited 
(Fig. 3). Correspondingly, the Bloch waves of type 1 
(2) are damped exponentially in the bulk of a crystal 
with the USG B < 0  ( B > 0 )  and, hence, do not con- 
tribute to the image while the waves of type 2 (1) 

propagating along hyperbolic trajectories undergo 
internal reflection at a depth z,  = ~([aOl/[yhB I -- 2/]B[) 
inside a crystal and then return to the entrance sur- 
face. Here they are split into two parts, the outgoing 
and reflected waves, and so the process continues 
(Chukhovskii, Gabrielyan & Petrashen', 1978). In 
other words, wave-field components with sign 
(aofl) > 0 gain the capability of a 'waveguide' travel- 
ling along the entrance surface over large distances, 
restricted only by their absorption lengths. As a con- 
sequence, a new kind of interferometric fringe seems 
to be possible owing to the interference of the Bloch 
waves coming to a given point on the entrance surface 
as a result of a number of successive internal reflec- 
tions. Physically it is clear that it is the waves which 
undergo internal reflections repeated once and twice 
that mainly contribute to fringe formation (Fig. 4). 

The eikonal function of a once-reflected wave is 
determined by the same expression as in the Laue 
diffraction case, (2.2), with the substitution x ~ z .  
Hence, at the point (x, 0) on the entrance surface one 
has 

r~(x) = Re Sl(x)  

= x/2(1 + B2x2) ~/2 

+(1/2[BI) ln[( l+B2xZ) ' /2+lBlx] .  (3.6) 

Correspondingly, for the doubly reflected wave the 
eikonal function is equal to 

F2(x) = 2F~(x/Z)-~r ,  (3.7) 

where -~- is the phase shift due to the reflection of 
the Bloch wave from the entrance surface. 

As is easily seen, for small values of x the phase 
difference zlF = F~-  F2--~- and fringe formation is 
suppressed. The first and subsequent fringes occur 
provided that the condition 

F , ( x , ) -  F2(x,) = 2=n (3.8) 

is satisfied, beginning with the number n = 1. 

~ H 

/ h 

0 

Fig. 3. The initial excitation points of the Bloch waves on the 
dispersion surface. The Bragg diffraction case. 

Fig. 4. Ray trajectories in a bent crystal. The Bragg diffraction case. 
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Supposing that IBIx< 1 (one recalls that IBI'~ 1) 
and taking into account (3.6)-(3.8), one can find a 
simple estimate for the positions of fringe maxima: 

x, = [167r (2n-  1)/5B2] ~/3 (3.9) 

USG fringes in Bragg section topographs thus 
appear, starting from the ' threshold'  length. The first 
fringe is at a distance x~=(16zr /5B2)  ~/3 from the 
incidence slit and subsequent ones are located in 
accordance with the law x,---(n __1)1/3. 

These fringes were experimentally observed by 
Shulpina, Petrashen', Chukhovskii  & Gabrielyan 
(1984). A topograph and its microdensitometric curve 
are shown in Figs. 5 (a)  and (b). The theoretical and 

3 experimental dependences of x ,  as functions of the 
number n are plotted in Fig. 5(c). It is seen that 
theory and experiment are in good agreement. The 

3 slope of the straight line x .  is proportional to B -~ 
[see (3.9)] and from here a simple method for USG- 
value determination evidently follows. 

As an example the fringe pattern for a crystal with 
the strain gradient varying along the direction perpen- 
dicular to the diffraction plane is represented in Fig. 

""  . . . . . . . . . . . .  [ 7~ -  - "  ~ - I I I l l  . . . . . . . . . . . . . . .  

: :  - "  I I 
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(b) 

Fig. 5. The Bragg section topograph of a bent crystal. (Si crystal, 
radius of curvature R = 60 m, Mo Ka, 333 reflection. Courtesy 
I. L. Shulpina.) (a) Experimental image, (b) microdensitometric 
curve, (c) positions of the diffracted intensity maxima as a 
function of the fringe number. 

6. The simulation is performed by means of the 
numerical solution of the Takagi-Taupin equations. 
It is clearly seen that the fringe contrast depends on 
the USG sign just as in the Laue diffraction case. The 
reason is that the USG sign defines the Bloch waves 
which form the fringe pattern. They are the weakly 
(strongly) absorbing waves relating to branch 1 (2) 
of the dispersion surface for B > 0 (B < 0). Therefore, 
the fringe contrast and its reduction as the distance 
from the incidence slit increases are not symmetrical 
with respect to the line B -  0 (see Fig. 6). 

It is essential that for small USG values the first 
distance x~, which increases as B -2/3 [see (3.9)], can 
become larger than the X-ray absorption length X~b~ = 
~¢1~ Re(x,,X-h)l'/:/Im go(1 +1/31), /~= volvo. Then, 
one has the critical value of the USG 

I n l . =  ( 16~-/5 X3~b~) '/2, (3.10) 

below which the fringe contrast is negligible. 

4. The Laue section and traverse images 
of dislocations 

In order to exhibit the main features of images of 
single dislocations in bent crystals let us assume for 
simplicity the Laue symmetrical diffraction case and 
a screw dislocation parallel to the crystal surface, 
such that 

(hu) : [(hb)/Err] arc tan ( z -  Zo)/y, (4.1) 

Otd = - [ ( h b ) / 4 z r ] y / [ y 2 + ( Z - Z o ) 2 ] .  (4.2) 

Here h is the diffraction vector, b is the Burgers 
vector, Zo and y are the depth of a screw dislocation 
and the coordinate perpendicular to the diffraction 
plane, respectively. 

Bearing in mind that we want to treat the coopera- 
tive influence of strains caused by the bend and by 
the dislocation on Pendellrsung fringe formation we 
shall use (2.5) for the eikonal function S(0, z). 

~ . .  6 . , ,  . . . . .  ~ , , ; ; i ;  . . , ; 0 i i  . ; . : ;  . . . .  ; . . 

|I:I|||1: 
o. . . . .eo . .  

g : : ; : : : ; :  
, , , . , , , , ,  . , . , , , , . ,  
, . . , , , e . ,  , , . o . t . , ,  
, o , , . . , . ,  , , .  , . , . ,  

: ; k : : L :  , . . . . . . . . .  : . . . .  : . .  , .  : 

~;!iW! • i ..:. :;~:~ii::i:i;'!:. ;..;::t,."7....[~..'i"::!'.~:."7 ~: 

Fig. 6. The simulated Bragg section topograph of a bent crystal. 
The strain gradient B varies from B = -4  in the upper part to 
B = 4 in the lower part of the image. Si crystal, Cu Ka, 444 
reflection. 
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In our case the total deviat ion parameter  a (0 ,  z) 
is equal to [cf. (4.2)] 

a(O, z )=-Bz - [ (hb ) /47r]y / [y2+(Z-Zo)2] .  (4.3) 

Substituting (4.3) into (2.5) one easily finds the 
m a x i m u m  phase difference for the limit y ~ 0, 

F(O)= AFb +i(hb)l/2, (4.4) 

where AFb is the phase difference due to the bend  of  
the crystal only. 

For arbitrary values of  y the funct ion AF(y) is 
complicated and depends  on the sign of  the product  
yB(hb).  The behaviour  o f  2AF(y) - ¢r/2 versus y and 
the corresponding schemat ic  image of  the central 
PendellSsung fringe contrast  in the Laue section topo- 
graph of  the screw dis locat ion with ( h b ) =  - 4 ¢ r  are 
shown in Figs. 7(a) and  (b), respectively. It is seen 
that when lyl decreases the curve 2AF(y ) -Tr /2  
increases monotonica l ly  under  the condi t ion that 
yB(hb)  > 0, whereas for yB(hb)  < 0, 2 A F ( y ) -  7r/2 
first decreases, coming to a m i n i m u m  at the point  
lyl = I(hb)/4~rBzol, and then it tends to the m a x i m u m  
given by (4.4). This is the reason for the asymmetry  
of  the Pendell6sung fringe pattern with respect to the 
dislocation line y = 0 observed in the exper imenta l  
and s imulated section topographs  of  Figs. 8(b) and  
(d). 

From this the s imple rule for the de terminat ion  of  
the Burgers-vector sign of  a dislocation under  the 
bending  of  a crystal evident ly follows. 

It is worth noticing that  in the case of a bent  crystal 
the sensitivity of  the PendellSsung fringe pattern to 
small  strain fields enlarges. Indeed,  as is seen from 
Fig. 7('a) a not iceable change of  AF takes place over 
distances of  the order of  ten extinction lengths from 
a dislocation line. The reason is that for B = 0 the 

( a )  2AF - ~/2 

-4O -30 - 2 0  -10 

"139 

o t ~o 2o 

V / / / / / / / / / / / / / / / / / / . 4  //A 

Fig. 7. (a) The phase difference 2AF(y)-w/2 as a function of 
the distance y from the screw dislocation with (hb)/2cr = -2  
aiongthe axis of the Laue section topograph. T= 51.68, B= 
-0.0293 (Si crystal, Mo Ka, 220 reflection, crystal thickness 
t =600 gm). (b) Schematic image of the central Pendell6sung 
fringe in the Laue section topograph, drawn in accordance with 
2AF(y)-¢r/2 in (a). The dashed line shows the asymptotic 
value of 2AF(y) - Ir/2 for lYl -" ~. 

phase difference AF as a funct ion of  B has a m i n i m u m  
[O(/tF)/OBI B=o = 0], while if  B ~ 0 then ~(AF)/aB 
0, and hence the local strain gives rise to a l inear 
contr ibut ion to the phase  difference AF. 

Now let us consider  another  new interesting effect, 
namely  the 'spli t t ing'  of  direct images of a dislocation 
in the bent  crystal with respect to the dislocation line 
(see Figs. 8b, d). To unders tand  the nature of  this 
p h e n o m e n o n  it is necessary to remember  that a direct 
image is formed as a result of  the inter-branch scatter- 
ing of the Bloch waves in the area of  the intersection 
of  the dis locat ion line with the incident  X-ray beam 
direction. These BIoch waves have initial excitation 
points lying on different branches  of  the dispersion 
surface: on branch  1 for a o >  0 and on branch  2 for 
a o < 0 ,  as shown in Fig. 9. In the case in question, 
for a fixed sign of  the dislocat ion deviation parameter  
C~d only one of  the two Bloch waves undergoes inter- 
branch scattering near  the dislocation line, where its 
excitation point  passes through the central region of  
the dispers ion surface. A subsequent  analysis  shows 
that, for the dis locat ion side y ( h b ) >  0 or y ( h b ) <  0, 
so the Bloch wave belongs to either branch 1 or branch 
2, respectively. For bent  crystals trajectories of  the 
Bloch waves undergoing  inter-branch scattering are 
curved in opposi te  directions depending  on the sign 

? 

h 

(a) (b) 

~ , ~  i , ' 

,, ~ i l  ,~ ~ 

(c) (d) 

Fig. 8. The experimental Ca), (b) and simulated (c), (d) Laue 
section topographs of an Si crystal with a screw dislocation 
(courtesy E. V. Suvorov). Mo Ka, 220 reflection, t = 600 pLm, 
(hb)/2cr = -2;  (a), (c) B=0, (b), (d) B= -0.0293. 

J 
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of the USG parameter B. This means that on both 
sides of the dislocation marked by the sign of yB(hb) 
the parts of the direct image are shifted in opposite 
directions with respect to each other, and as a con- 
sequence the determination of the sign of the Burgers 
vector is feasible. In particular, in Figs. 8(b) and (d) 
(hb) < 0, if one recalls the formula (4.1) for the dis- 
placement function of reflecting planes due to a screw 
dislocation and that the USG parameter B < 0. 

In conclusion, we shall briefly discuss several 
pecularities of traverse images of dislocations in bent 
crystals. A priori, it is clear that in the case under 
consideration the interference of the Bloch waves 
belonging to different branches of the dispersion sur- 
face is not very important. We restrict ourselves to 
USG values for which the condition 

B2T 3 < 37r (4.5) 

holds, so that the phase difference A F ' =  
A F ( B  # O) - A F ( B  = 0) due to the bending of a crystal 
is smaller than 7r [see (2.2)]. Besides, the case of the 
Lang contrast of images is of practical interest when 
21kl T ~ 1. 

In this case, only the effect of renormalization of 
the dynamical absorption coefficient k + k - B  is 
essential. Therefore the bending of a crystal with the 
USG parameter B > 0 makes the effective dynamical 
absorption of X rays larger, and the transition from 
the Lang contrast of images to the Borrmann one 
takes place. 

In order to illustrate this conclusion the simulated 
traverse images of the screw dislocations I ( y )  with 
different depths under the entrance surface of a crystal 
are plotted in Fig. 10 (B = 0) and Fig. 11 (B ~ 0). The 
simulations were performed by use of the numerical 
variable-step algorithm proposed by Petrashen' 
(1976) and the reciprocity theorem (Petrashen', 
Chukhovskii & Shulpina, 1980). 

As can be seen from Fig. 10, dislocation image 
profiles I ( y )  have two peaks. At the point y = 0 the 
dislocations are not visible since the product 
(hb)/27r = 2 is even. For dislocations lying near either 
the entrance or exit surface the intensity peaks have 
different heights on both sides of the line y = 0. Physi- 
cally, this is connected with the circumstance pointed 

H h 0 

out above. The direct image is formed owing to the 
inter-branch scattering of Bloch waves of either type 
1 or type 2 depending on the sign of the product 
y(hb). These Bloch waves have different paths above 
and below the dislocation line, with the exception of 
the dislocation lying in the middle of a crystal, for 
which the wave field forming a direct image is, on 
the average, absorbed normally. 

A comparison of Figs. 10 and 11 confirms the main 
theoretical conclusion that for the USG B >  0 the 
enhancement of the effective dynamical absorption 
of X-rays in bent crystals yields the Borrmann kind 
of image contrast for any depth of dislocation under 
the entrance surface, although the asymmetry of 
profiles owing to the dominant contribution by one 
of the two Bloch waves is, in general, conserved. In 
the opposite case of the USG B < 0 the dislocation 
image contrast is positive as a whole and it is similar 
to that for a non-absorbing flat crystal. 

0.2 

I n /  

o. .+ 

i ' F  
. • i t  
: ;+'~ 
• : ¢ ' t  

:" ,' 5 ~.t 
. . . . . . .  "', . . . . . . . .  " t t :  , |  - -  3 

i i i T • • 

-10  0 10 Y 

Fig. 10. The simulated profiles of traverse images of screw disloca- 
tions in a fiat crystal (B =0); T=30, (hb)/27r = 2, Zo = (1) 5, (2) 
15, (3) 25; Cu KG, k = -0.05. 

t 
l n l  ~. 

0.2 ~ ~ 

~ .  " \  ,4 

-° t I  !j7 
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- 0 - 4 ~  
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Fig. 9. The initial excitation points of the Bloch waves forming the Fig. 11. The same as in Fig. 10 for a bent crystal. (1)-(3) B = 0.05, 
direct image of a dislocation. (4) B = -0.05, Zo = 5. 
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The authors are greatly indebted to I. L. Shulpina 
and E. V. Suvorov for the experimental topographs 
placed at their disposal. 
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Abstract 

It is shown that an asymptotic development up to 
order N-2 exists for the density of the structure factor 
in P1. An upper bound for the error is calculated. 

1. Definitions 

We shall consider the centrosymmetric case P]. For 
N equal atoms and reciprocal-lattice vector h, 

Eh=(2/N 1/2) Y, cos(2rrrj.h) (n= N/2) 
j= l  

is the normalized structure factor. Now let 
X l ,Xz , . . . , xn  (n = N/2) be n vectors that are dis- 
tributed independently and uniformly over the unit 
cell and consider the random variable 

/~h=2N -1/2 ~ cos(27rxj.h) ( n = N / 2 ) .  (1) 
j= l  

Let us denote by E ~p,,(E) the probability density of 
the random variable Eh. 

0108-7673/88/010014-04503.00 

2. Theorem 

I P(E)  - (27r)-~/2[exp ( -  E2/2)]{ 1 -(1/8N)H4(E) 

+(1/N2)[+(1/18)H6(E)+(1/128)Hs(E)]}]  

-<[8/N3(27r) 1/2](15.2 + 22.7/N + 195.52/N 2 

+11217-28 /N 3) 

oo 
+(N'/2/R'rr)[Jo(1)] 'N/2)-4 J" ]Jo(X) ] 4 dx 

1 

+ ( Nl/2/2 rr) S exp (-  Nu2/ 8) du (2) 
! 

where 

Ha(E) = E4-6E2+3 

H6(E) = E 6 - 1 5 E 4 + 4 5 E  2-15 

Hs(E) = E8-28E6+210E4-420E2+ 105. 
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(3) 


